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Highlights 

Highlights 

Quantitative performance metrics are evolving for oil spill trajectory forecasts. 

Spatial verification methods are new to oil spill forecasting. 

Deepwater Horizon spill forecasts are evaluated using remote sensing observations. 

Fractions Skill Score provides horizontal scale appropriate for presenting forecasts. 
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Abstract 

In the event of an oil spill, emergency responders must quickly 

deploy cleanup and protection equipment using guidance provided 

by a forecast trajectory. Forecasting the location of the 

surface oil over time is standard practice; however, current 

performance metrics used for assessing the quality of the spill 

forecast lack both an appropriate numerical model accuracy score 

and specification of the expected spatial resolution limit for 

useful forecast information. This paper adapts the Fractions 

Skill Score method, commonly used in weather forecasting, to oil 

forecasting. A subset of satellite images and trajectory 

forecasts from the Deepwater Horizon oil spill are used as an 

example of the method. 
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1. Introduction 

Breakthroughs in applied research can consist of 

developing new techniques designed for a specific field or, 

conversely, applying techniques developed for other applications 

to solve challenges in the new field (e.g. Sarrute & Burroni, 

2008; Malis, 2004). This paper does the latter. Forecasting the 

movement and potential landfall of spilled oil is critical to 

efficient emergency response by providing risk estimates for 

threatened resources and identifying best locations for cleanup 

teams. Computer technology has advanced such that spill 

transport models are capable of extremely high resolution in 

their forecasts of surface oil distribution, often exceeding the 

resolution of either the environmental input or the oil 

observation data. Thus, while increasing model resolution may 

improve the spill forecast (Janeiro et al., 2014; Pisano, et 

al., 2016), this outcome is not guaranteed (De Dominicis, et 

al., 2016). 

Weather forecasters are well aware of this fact when doing 

meteorological predictions. For example, Mittermaier & Csima, 

(2017) indicate that, for numerical weather estimates, high-

resolution models do not necessarily increase accuracy, as 

errors at small scales may increase due to unmeasured 

environmental fluctuations not being included. A similar 
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circumstance is likely for oil transport forecasts that often 

depend critically on local wind and unresolved oceanographic 

features. 

The purpose of this paper is to adapt numerical skill 

assessments that have proven effective for meteorological 

predictions to spatial predictions of spilled oil. While 

assigning a numerical accuracy value to a forecast may seem to 

be an obvious requirement, traditional oil trajectory models 

usually do not include this parameter. Instead, forecasts are 

often qualitatively assessed to their accuracy (Cheng et al., 

2011; Cheng, et al., 2014; Le Hénaff, et al., 2012; Özgökmen, et 

al., 2016; Pisano, et al., 2016). Quantitative metrics primarily 

involve comparison of the forecast slick area with spill 

observation area using raw values of ‘percent observation in the 

forecast’ and ‘percent forecast in the observation’, (Huntley, 

Lipphardt Jr., & Kirwan Jr., 2011; Cheng et al., 2011; Kim et 

al., 2014; Cheng, et al., 2014; Guo et al., 2018). 

By themselves, percent area metrics are of limited value. 

Consider the following trivial, but illustrative, example. 

Assume the following two spatial grid systems used to forecast 

the oil, letting ‘O’ be an observed patch of surface oil and 

‘M’, an estimated model-forecast location (Figure 1). While the 

actual oil location and forecasted location are the same in Fig. 
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1, the finer resolution grid, Fig. 1(a), indicates a miss as the 

forecasted and oiled grids do not overlap. The coarser grid, 

Fig. 1(b), shows a ‘hit’. Thus resolving appropriate grid scale 

is an important factor in determining forecast skill. 

Figure 1. Model-forecast, ‘M’ is shaded gray and the observed 
oil, ‘O’, shaded black with (a) 5 km grid resolution and (b) 10 

km grid resolution. 

Another important factor to consider is the potential 

discrepancy between observational area and model-forecast area. 

The former is usually much larger, meaning that the number of 

non-oil grid boxes greatly exceeds the number of oiled boxes. 

Similar concerns are present in weather prediction, the so-

called ‘rare event’ prediction. Consider two forecasts where 

neither predict the exact oil location but the first forecast 

misses by a kilometer while the second misses by 10 kilometers. 
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Obviously, the first forecast is better but both might score the 

same by the raw metrics mentioned above. 

A final consideration in developing a skill metric involves 

understanding the planned application of the forecast. For any 

common grid between forecast and observation, Table 1 shows four 

possible outcomes for any individual grid box; (a) model and 

observation may agree on oil being present- a hit, (b) model 

predicts oil but none found- false alarm, (c) oil present but 

not predicted – a miss, and (d) oil not predicted or observed- a 

correct rejection. If one is drilling for oil where the cost of 

the drilling is expensive relative to the value of the potential 

oil find, then one wants to minimize (b), the false positives, 

even if this means missing some oil (c). Oil spill response, 

however, operates under a different standard. Generally, 

responders adopt a minimum regret strategy (Galt, 1998) to 

identify all oil possible and minimize misses, (c), even at the 

expense of increasing the number of false positives, (b). 
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Table 1. Contingency table to evaluate oil spill 

forecasts, modified from Jolliffe & Stephenson (2012). 

Oil Model-forecast 

Oil observation____ _________________ 

Yes No 

Yes 

No 

a (Hit) b (False alarm) 

c (Miss) d (Correct rejection) 

There is an important caveat that the reader should be 

aware when matching spill forecasts to spill observations. On 

the one hand, the modeler, predicting oil mass or volume 

distribution, has to carefully simulate very convoluted 

environmental and oil behavior processes that easily produce oil 

patches in the same spill that may vary spatially in thickness 

by orders of magnitude (Spaulding, 2017). On the other hand, 

visual observation, and even the more sophisticated oil slick 

remote sensing capabilities, typically show much better accuracy 

in determining slick surface area than they do in estimating the 

more useful surface oil volume (Fingas, 2018). Recognizing the 

greater accuracy in area observation, this paper only looks at 

comparison of surface area prediction by the models versus the 
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satellite observation of the spill area while recognizing that 

this situation may change due to new studies. 

Researchers are examining non-electromagnetic methods to 

measure thickness, particularly where there may be interference 

in direct observation, by using subsurface, upward looking, 

sonar (Basset et al, 2016), but thus far these remain more 

experimental than operational. Other researchers are employing 

alternatives to the more standard radar, visual and near IR 

frequencies common on many sensor packages (Fingas and Brown, 

2018). One older method (Skou, 1986) that is regaining some 

popularity is passive microwave radiometry that uses the 

relatively large difference between oil and water emissivity in 

this band combined with multiple nearby frequencies to estimate 

oil thickness. However, operational challenges remain including 

onsite calibration by other means. Similarly, some success has 

been shown by processing hyperspectral images through advanced 

neural networks (Yingcheng et al., 2013) but these too require 

calibration, often site-specific, of the network. Thus, robust, 

comprehensive and accurate surface, oil volume determination 

remains to be achieved. 

Fortunately, separating the thicker, recoverable, oiled 

area, of unknown depth but usually containing the preponderance 

of the surface oil volume (this paper does not consider oil 
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mixed in the water column), from the much thinner sheen is often 

sufficient for the response. Most widely used spill models, as 

well as many remote sensing platforms, have this capability. 

While not applied to the example, the techniques described in 

this manuscript, by mapping only the thick area, could 

approximately compare the relative accuracy of the forecast to 

the observation, even if absolute volume numbers are unknown. 

One warning to consider is that for, some specific oil products, 

neglecting sheen volume might not be appropriate. 

Lehr et al. (2019) compared oil spill forecasts with 

satellite observations by overlaying both onto a common grid. 

They applied categorical skill scores developed for weather 

forecast verification (Wilks, 2011; Jolliffe & Stephenson, 2012; 

WWRP/WGNE, 2017) to quantitatively evaluate forecast 

performance. The study, which involved a small subset of 

forecasts from an actual spill incident, suggested as good 

choices the Pierce Skill Score (Peirce, 1884; Jolliffe and 

Stephenson, 2012) or PSS, and the more modern metric for rare 

events, Symmetrical Extremal Dependence Index or SEDI (Ferro & 

Stephenson, 2011). These two metrics have the advantage of 

considering ‘correct rejections’. However, the drawback of such 

quantitative methods, as presented in that study, is the 

performance metrics were dependent on the resolution of the 
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common grid. Alternatively, forecast skill can be evaluated over 

different spatial skills using fuzzy neighborhood techniques 

found in the literature, particularly for evaluating 

precipitation forecasts (Ebert E. , 2008; Ebert E. , 2009). 

Roberts & Lean (2008) introduced the Fractions Skill Score or 

FSS, to assess the variation of skill with the spatial scale of 

either single or aggregated rainfall accumulation forecasts. 

This approach is different from the previously discussed 

performance metrics in that an exact match between the forecast 

and observation, while preferred, is not necessary. This 

flexibility permits a certain amount of uncertainty in the 

observation location as well as the forecast. The FSS is 

potentially useful for oil spill verification by avoiding the 

double penalty problem associated with other metrics. Hence, one 

of the advantages of the proposed metric is a complementary 

strategy for identifying the scale at which the oil spill 

forecast is most useful. 

Section 2 describes the example dataset containing 

forecasts and satellite observations from an actual spill 

incident. This section also presents the methodology to derive 

oiling probabilities for calculating the FSS and the measures to 

evaluate the forecast quality. Section 3 shows the results of 

the FSS analysis and discusses the horizontal scale appropriate 
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for presenting the forecast. Section 4 contains the conclusions 

and suggestions for further work. 

2.0 Method 

2.1 Example spill forecast and observation data 

On April 20, 2010 at 07:45 am local time, an explosion on 

the Deepwater Horizon platform released oil into the Gulf of 

Mexico for 87 days spilling 4.9 million barrels (USCG, 2011). 

The incident occurred approximately 65 km offshore over the 

outer continental slope (Figure 2). Surface oil covered large 

areas of the eastern Gulf of Mexico in a region well known for 

complex ocean circulation. Near the well blowout, buoyancy 

effects from the Mississippi and Atchafalaya River systems and 

deep ocean circulation influenced the surface circulation 

(MacFadyen et al., 2011). The dominating deep ocean circulation 

features in the Gulf of Mexico are the Loop Current (Oey et al., 

2005) and the shedding of eddies (Xu et al., 2013). In May 2010, 

the spill response community was alarmed that deep-water ocean 

circulation would transport surface oil through the Florida 

Straits (Liu et al., 2011). As detailed in Liu et al., the 

shedding of an eddy from the Loop Current prevented the main 

surface slick from moving further south. 
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Figure 2. Map showing the Deepwater Horizon well site, ‘o’, the 

National Data Buoy Center (NDBC) Buoy 42040,’ ’ and boundary 

of the verification domain,’- ‘. 

After the spill, the National Oceanic and Atmospheric 

Administration (NOAA) assembled a collection of oil forecasts 

and remote sensing products generated during the incident 

(Deepwater Horizon Natural Resource Damage Assessment Trustees, 

2016). From this dataset, we assess a small subset of forecasts 

and satellite observations examined in detail by Lehr et al., 

(2019). In their study, the dataset included the Experimental 

Marine Pollution Surveillance Reports (EMPSR) provided by NOAA’s 

National Environmental Satellite Data and Information Services 

(Street, 2011) and the oil trajectory forecasts provided by 

NOAA’s National Ocean Service (MacFadyen et al., 2011). Figure 2 
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shows the boundary of the verification domain used in the 

analysis. Both the EMPSR analysis and the forecasts considered 

areas that potentially, but not necessarily, contained some oil. 

This suggests the bounded areas for the observation and for the 

forecast may contain both oil and non-oiled water. 

Lehr et al (2019) determined in the timeframe, 5 May 2010 

to 8 May 2010, the surface winds were amenable for oil slick 

detection with the average local wind speed of ~4 m/s (Figure 

3). During this time, the spill release rate was relatively 

constant with minimal spill mitigation measures in place, 

including sprayed and injected chemical dispersants that would 

reduce impact on surface expression of the oil. 

Figure 3. Wind observations for Buoy 42040 (NDBC, 1971). 
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Hydrodynamic and wind forecast models, from a variety of 

sources, are typically used in operational forecasting and this 

was the case during the Deepwater Horizon. However, this 

complicates forecast evaluation in general as depending on a 

particular spill event different models may be used. For this 

reason, we have intentionally setup the study using a series of 

operational forecasts rather than the performance of a 

particular oil spill model. In this example, the original 

forecasts and observations are not modified or corrected in any 

manner and, as originally released during the spill response; 

date and time are presented in Central Daylight Time (CDT) with 

the time offset from Coordinated Universal Time (UTC) −5:00. 

Beginning on May 5, 2010, NOAA produced twice-daily 

forecasts of the expected oil location on May 8, 2010 for a total 

of six forecasts. Table 2 shows the forecasts and the length of 

time in hours between the issuance of the forecast, ’Prepared’, 

and the predicted oil location, ‘Estimate’, as the ‘Lead Time’. 
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Table 2. Description of the six forecasts. Date and time are 

Central Daylight Time (CDT). Lead-time is the hours between 

Forecast Prepared and Forecast Estimate. 

Forecast Prepared Forecast Estimate Lead Time (h) 

1 5 May 2010 at 1300 8 May 2010 at 0600 65 

2 5 May 2010 at 2000 8 May 2010 at 1800 70 

3 6 May 2010 at 1300 8 May 2010 at 0600 41 

4 6 May 2010 at 2000 8 May 2010 at 1800 46 

5 7 May 2010 at 1300 8 May 2010 at 0600 17 

6 7 May 2010 at 2100 8 May 2010 at 1800 21 

All the satellite images (Table 3) selected for this work 

employed synthetic aperture radar (SAR) detection. SAR senses 

oil slicks by detecting the Maragoni effect of oil film to 

dampen the sea surface capillary waves. There is research to 

estimate oil thickness looking at radar polarization ratios 

(Garcia-Pineda et al., 2020). However, the images used in this 

paper only recorded oil surface area. TerraSAR-x and COSMO-

Skymed used x-band radar (8–12 GHz) while the RADARSAT 

satellites used c-band (4-8 GHz). 
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Table 3. Experimental Marine Pollution 

Surveillance Reports (EMPSR) used as ‘oil 

observation’ for forecast evaluation. Date and 

time are Central Daylight Time (CDT). 

EMPSR Source Image Acquisition 

1 COSMO-Skymed2 8 May 2010 at 0657 

2 RADARSAT-2 8 May 2010 at 0659 

3 TerraSAR-X 8 May 2010 at 1823 

4 COSMO-Skymed 2 8 May 2010 at 1851 

5 RADARSAT -1 8 May 2010 at 1858 

The forecasts did not exactly correspond with the image 

acquisition times on 8 May 2010. We estimated the movement of 

the surface slicks near the well blowout using simple vector 

addition of the components due to wind and currents (USCG, 

1991). This approximation assumes the oil drifts with the 

surface current at 100% of the current speed and at 3% of the 

wind speed (Smith, 1976) providing a single, constant and 

plausible value for oil movement. Near the spill site, the 

nominal surface current velocity was about 0.2 m/s (Liu et al., 

2011) and 3% of the average wind speed at NDBC Buoy 42040, ~0.1 

m/s so the estimated oil transport is roughly 1 km over a one-

hour period. Therefore, the EMPSR products are combined over a 
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period of 1-h centered on the acquisition times coinciding with 

the morning and afternoon forecast of 0600 and 1800 (Table 2). 

Combining the satellite images also helped reduce the 

problem of limited coverage of a particular satellite and 

provided a composite observation for the entire domain. For two 

satellites that passed within 2 minutes of each other, we 

combined areas presented in the EMPSR to represent the 

observation on 8 May 2010 at 0600 CDT. The remaining three 

images were within 35 minutes of each other to represent the 

observation on 8 May 2010 at 1800 CDT. 

Unsurprisingly, the simple comparisons of satellite imagery 

with model forecast are disparate due to the complexity of the 

spatial distribution of the oil slick and the fundamental 

difference between oil volume and oil area, as discussed 

earlier. Figure 4 graphically demonstrates the complexity of the 

problem by overlaying the lead times of six forecast, 17, 21, 

39, 46, 65 and 70 h matched to the oil observations. All 

satellite-detected oil is black; the forecast is shaded blue and 

forecast areas that overlap with the observation, dark blue. The 

forecast coverage of areas likely to contain oil was larger, 

ranging from approximately 12,000 to 18,000 
2km with the area 

believed to be oil based on satellite observations, 6,000 – 
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9,000 
2km . Satellite observations indicated large oiled areas 

southeast of the release site, along with oiled areas to the 

east and west. East of the blowout, the 21-, 46- and 70-h 

forecasts (Fig. 4(b), (d) and (f)) predicted oil coverage but 

with no apparent corresponding observed oil in this area. 

Conversely, the 17-, 41- and 46-h forecasts (Fig. 4(a), (c) and 

(e)) under represent the observation in the same area. A similar 

situation occurs for the forecast to the west. Visual inspection 

shows predictions in these areas are not correct. 
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Figure 4. Forecast are shaded blue, the observed oil, black 

and the overlap of the observed oil and forecast, dark blue. 

For clarity, the coastlines are not plotted but for 

reference, the well blowout is marked ‘+’. 
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Pooling the experimental dataset into 17 – 21 h, 39-46 h 

and 65-70 h lead-time improved the coverage (Figure 5). The 

forecast area likely to contain oil and observational coverage 

of likely oil increased to approximately 17,000 
2km and 20,000 

2km , respectively. Forecast coverage of the oil slicks east of 

the blowout for all lead-times increased significantly but under 

performed for oil to the west. As previously noted, the forecast 

is incorrect for the oil southeast of the well blowout. 
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Figure 5. Aggregated forecast are shaded blue, the observed 

oil, black and the overlap of the observed oil and forecast, 

dark blue. The coastlines are not plotted but for reference, 

the well blowout is marked ‘+’. 
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Perhaps the most interesting aspect of Figures 4 and 5 is that 

forecasts consistently under represented the oil coverage 

southeast of the well blowout. Overtime, satellite imagery 

indicated oil in this particular area progressed to a long 

narrow band extending southeastward from the blowout towards the 

Loop Current. See Huntly et al (2011) and references therein for 

details regarding this particular feature. 
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2.2 Fractions Skill Score Method for Oil Spills 

The authors recognize that most oil spill experts are 

unfamiliar with the fractional skill score (FSS) method while 

meteorologists will not necessarily be knowledgeable of the 

demands of spill forecasting. Therefore, this section explains 

FSS and the implementation requirements for application to oil 

trajectory forecasts. 

While not a theoretical requirement, trajectory forecast 

results based on model simulations (not necessarily the same as 

the model internal grid) and spill observations used to initiate 

and validate the model are ideally applied using a common 

geospatial grid.  For spills near the shore, these grids may be 

nested and restricted to account for shoreline affects. 

However, for large offshore spills such as the Deepwater Horizon 

Spill in the Gulf of Mexico (MacFadyen et al., 2011), the key 

question asked of the modelers is the time and location for 

significant oil impact to the nearshore and shoreline. 

Remote sensing imagery for large offshore oil spills is 

primarily based on satellite sensors in the visible spectrum and 

x-band radar. These are useful frequencies for mapping surface 

oil spatial coverage but typically (see earlier discussion) do 

not provide information for oil volume coverage. As mentioned, 

this is a significant limitation as oil thickness can vary over 
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three orders of magnitude and spill and trajectory models 

forecast oil volume or mass rather than surface area. Given a 

common grid, spill forecasters must develop guidelines that (1) 

determine whether a certain grid cell has sufficient oil 

considered a ‘hit’, Table 1, and (2) when the model predicts oil 

amount in the cell above a certain preset threshold. The first 

guideline can, at present, best be approximated by requiring the 

cell be more than a set fraction, by ‘thick’ oil, excluding 

sheen, to be considered as impacted by oil. Hopefully, this 

guideline will be improved with development in remote sensing 

surface volume estimation rather than surface area (Leifer, et 

al., 2012; Fingas, 2018; Garcia-Pineda et al., 2020). Since the 

SAR images used in this study did not provide separation of 

thick and sheen, the authors used oil area fraction in the grid 

as a guideline. The second guideline models the oil transport 

using Lagrangian Elements or LEs (Spaulding, 2017): parcels of 

oil that represent the continuous slick. Then, the model 

declares a grid ‘hit’ whenever the number of LEs in a particular 

grid exceed a set value. 

Using the suggested guidelines, one may construct binary 

matrices for the model forecast, M
(n,m) and observed oil, O


(n,m)

with each spanning a N x M grid. The two matrices span the grid 

in a binary fashion with 1 assigned to a grid cell matching the 
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forecast/observation (oil or no oil) while 0 is assigned to a 

cell that does not match. A model probability of oil detection 

in the average grid cell is defined as 

  
  1 1

1
( , )

N M

n m
p M M n m

K
(1) 

with a similar definition for observed oil 

  
  1 1

1
( , )

N M

n m
p O O n m

K
(2) 

and, K NM

The model marginal probability prediction p M of oiling 

occurring, also called the marginal frequency or forecast rate, 

is 

( ) ( )
a b

r p M p M O p O p M O p O
a b c d

      


   

  
(3) 

However, a high does not imply a high correspondence between 

the forecast and the observation since increases by both hits 

(a) and by false positives (b). If, r 1 the model forecasts oil 

over the entire gridded area. In a minimal regret scenario, 

forecasters lean toward a high since this reduces the risk 

that the model prediction will fail to forecast oil 

 p M O   for a grid cell with high environmental value 
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(e.g., fish hatchery or turtle nesting site). Oil protection and 

recovery equipment in an emergency response is often limited. 

Responders need to know the forecasted ‘no oil’ areas to pre-

stage equipment appropriately to protect threatened high-value 

resources. 

A related descriptive statistic to 

r

 is the base rate, 

s

,  

which ignores the forecast and only looks at the marginal 

probability of observed oiling  

s  p O

(4)  

with 

s

 describing the rate of occurrence of the observations, 

nd, for complete oiling, 

s 1

. For a performance measure that 

epends on the base rate, comparison of  scores between different 

il spill events with different base rates  is difficult. For 

his reason, performance measures independent of the base-rate 

re preferable when comparing different events  or different 

odels.  

a

d

o

t

a

m

The ratio of 

r

 to 

s

 defines the frequency bias, 

B f

, of the  

forecast 

r p M( ) 
B B   a b

f f  0

(5)  

s p( )O a  c
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is the ratio of the total number of oiled grid cells 

according to the trajectory forecast compared to the number of 

cells that were oiled according to observation. This number 

represents a simple measure that summarizes the tendency of the 

trajectory to under forecast or over forecast. A trajectory that 

consistently forecasts more surface oil coverage than observed 

coverage exhibits a high bias. As mentioned earlier, forecast 

models that implement a minimum regret strategy intentionally 

introduce bias into the trajectory to reduce risk to sensitive 

resources. Meager oil spill observations can also introduced 

bias into the forecast thru hedging. Although setting of 

thresholds has proved useful in the weather forecast community 

for adjusting forecast bias (Mittermaier & Roberts, 2010; 

Mittermaier, Roberts, & Thompson, 2013), for oil spill response 

based on minimum regret, setting the thresholds so that the bias 

is greater is usually advantageous and ensures a performance 

metric represents the actual forecast. 

A very simple metric (PSS) was proposed by Pierce (1884) in 

the 19th century and is still used today; subtract the fraction 

of model misses from the number of model hits. The range of the 

PSS is from -1 (all wrong) to 1 (all correct). Defining 
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1
p M


O


   M n m O n m

  (6)  

K


, ,
n m 

and a similar definition  

1
p M


O


   M

 n, ,mO n m

  (7)  

K n m

then the PSS is   

PSS  p M

O


p M


O



  (8)  

with forecast skill defined as the improvement over a reference 

forecast such as climatology, persistence or a random forecast. 

There are several drawbacks to using the PSS as an oil 

spill metric for large offshore spills. Forecasters have a 

tendency to underestimate the occurrence or extent of rare 

events. For example, the initial estimate of the oil flow rate 

for the Deepwater Horizon Spill was underestimated considerably. 

The scientists, including one the authors, were reluctant to 

change the flow rate number by an order of magnitude from the 

original official value even though field observations from, 

among others, the other paper author, indicated that such a 

change was justified (States, 2013). This is such a common 

phenomenon that it has a common label; ‘hedging the forecast’. 

The PSS metric may actually favor such hedging. Consider that a 

spill forecast that predicts correctly the amount of surface oil 
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coverage but misses the specific grid location in most cases 

will have a negative PSS value while the extreme hedge of 

predicting no oil will get a PSS value of zero. In addition, the 

raw PSS gives no indication of the proper length scale for the 

spill forecast. The previous section illustrated why this is 

important. 

Roberts and Lean(2008) introduced an alternative metric, 

the fractional skill score (FSS) that, unlike traditional 

categorical skill scores such as PSS, an exact spatial match 

between forecast and observation is not necessary. While the 

mathematical notation of FSS is complex, the concept is simple. 

Beginning with a mesh consisting of a single large common grid 

cell shared by the prediction and observation. 
 
 1M O . For the 

non-trivial spill case, an oil spill exists, but the resolution 

is useless for spill response. As the common mesh cell number 

increases by reducing grid cell size, the forecast and 

observation will show increasing discrepancy. A ‘good’ forecast 

will show improvement over a persistent (assumes oil slick has 

not moved from last observation) or random forecast at a grid 

scale that provides optimum practical value to the response. A 

strength of FSS is that can also provide an estimate of the true 

spatial resolution of the forecast, which may be larger than the 

response optimum scale. 
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From a practical point-of-view creating a verification grid 

centered about a stationary, point-source release, such as a 

well blowout or grounded vessel, is straightforward and easily 

implemented operationally. For the experimental dataset, the 

nature of the ocean section covered by the oil leant itself to a 

square grid althought the technique would be similiar for a 

rectangular grid. The forecasts and the observations in the 

dataset do not include oil contacting the shoreline; only 

offshore oil. The model grid resolution during the spill 

incident ranged from ~3 to 14 km (MacFayden et al., 2011). 

Unfortunately, we were unable to determine the model resolution 

used to generate each forecast in the example data set. The 

resolution of the satellite sensors ranged from 18 to 250 m with 

100 being the common pixel size. Although Skok and Roberts 

(2018) recommend a common grid that closely matches the 

coarstest resolution of the observation and forecast, we decided 

to use 5 km for the basis of comparison as this was most 

frequently used grid resolution during the spill incident. The 

verification grid consisted of 89 x 89 grid squares with each 

cell length, 5 

km

.  

 For convenience, we considered  a common square grid mesh of 

N N

 square cells. Some intermediate resolution will group the 

cells into new larger square cells with integer 

n

  multiple of 
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the original grid cell length 

n 1

. Because the

are larger, there are fewer of them to cover t

area or mesh. Let 

K

 be the number of larger g

nK Kn 

. We can define a probability of modeled 

for each of the individual grid cells  

 

1
 
  

n n
pn M M i , j 

  

K i j 1 1
n

 new grid cells 

he same gridded 

rid cells with 

forecast detection 

(9) 

A similar definition holds for observations. Next, define an 

intermediate skill score, called the Fractions Brier Score (FBS) 

as 

  
 

21

n

n n n
Kn

FBS p M p O
K

(10) 

and the Fractions Skill Score (FSS) as 

 


 

 
 

 
 2 2

1

n n

n n
n

n n
K K

K FBS
FSS

p M p O

(11) 
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Calculations of the FSS are computationally intensive. However, 

Fagin et al (2015) significantly reduce the computational time 

by quickly computing “summed area tables”. This approach 

effectively clips the grid cells extending beyond the domain and 

avoids the need to pad the matrix with zeros. 

As a measure of forecast quality, Roberts and Lean suggest 

two measures: random and uniform forecasts. The random forecast 

has the same fractional coverage over the model domain as that 

of the observed oil, 

p O

, so that 



1
FSSuniform  1 p O 

 

2

. The FSS has a 


FSSrandom p O

range of 0 to 1 if there is an equal number of observed and 

forecast cells containing oil, and therefore, no frequency bias. 

However, as originally defined by Roberts and Lean (2008) and 

discussed further in Skok (2015; 2016) and generally recommended 

in Skok & Roberts (2016; 2018), the forecast indicates useful 

skill at the smallest neighborhood size at  

FSS  0.5

 with the 

following caveat, the frequency bias is less than 1.5 to 2.0. 

Otherwise, Roberts and Lean indicate a target or useful skill 

halfway between the random forecast and a perfect skill defined 

by 

(12) 
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The FSS procedure inherently contains sampling 

uncertainties, particularly since the example dataset consists 

of six coupled forecasts. In addition, Stephenson (2000) 

suggests an estimate of statistical error can demonstrate that 

skill does not occur simply by chance. To estimate the FSS 

uncertainty, we use a similar bootstrapping approached described 

in Kuell & Bott (2019). The original observation matrix and 

forecast matrix are each randomly sampled with replacement at 

the nearest neighbor of each grid point. FSS values are then 

calculated for 1,000 bootstrap sampled forecast and observation 

matrixes, ranked in ascending order using the 97.5th and 2.5th 

percentile of the distribution representing the 95% confidence 

interval. Figures 6 and 7 demonstrate the use of the confidence 

intervals. 
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 3.0 Results 

The FSS was  calculated for each forecast over horizontal  

scales ranging from a single grid cell, 

n 1

 (5 km) to an 89 x 89  

(445 km) grid cell domain, Figure 6. Overlaid with a shaded band 

is the 95% confidence interval. The resulting graphs show  all 

the forecasts improve as the spatial scale increases. The 

forecasts do not reach perfect skill, 1, as each forecast 

indicates bias. As discussed in Section 3, modelers may  hedge 

the forecast as part of a minimum regret strategy so that 

B f 1

 

is expected. The 

B f

 for five forecasts ranged from 1.7 

0.11

and 

2.3 

0.16

, Figure 6(b), (c), (d), (e) and (f). Surprisingly, the  

17-h forecast was highest with 

B f  3.4

 

0.27

, Figure 6(a).  

Forecast quality is evaluated using two measures: random 

and uniform forecasts . Figure 6 clearly indicates   that at the 

grid scale, 5 km ( 

n 1

), all of the forecasts were more skillful 

than a random forecast  with 

FSSrandom 0.03

 . The intercept between 

the curves and 

FSSuniform

 indicates the smallest scale that the 

forecast is considered skillful. Above the 

FSSuniform

 line, the 

forecast displays useful skill. Interestingly of the six 

forecasts, the 41 -h forecast achieved skill at the smallest 

horizontal scale at ~45 km ( 

n 9

) with 

FSS

, Figure 

uniform  0.51 0.04
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6(c). This is consistent with visual examination of the 41-h 

forecast in Figure 4(c). The predication indicates some oil to 

the east and slightly more oil southeast of the blowout compared 

to the other forecasts. Figures 6(b), (e) and (f) indicate the 

21-, 65- and 70-h lead-times had similar overall horizontal 

lengths ranging from ~65 km (n = 13) to 85 km (  

n 17

) at 

FSSuniform

. 

Significantly, the 17- and 46-h forecasts achieved skill at the 

largest scales ranging from 125 km (n = 24) to 185 km (n = 37). 

Overall, a compelling feature of Figure 6 is the scores do not 

correlate well with lead-time. However, within the 95% 

confidence interval, there is considerable overlap between the 

21, 41, 46, 65 and 70 lead-times. 
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Figure 6. Variation of FSS with horizontal scale for the 17-, 

21-, 41-, 65- and 70-h lead times. Dashed and dotted lines are 

uniform and random FSS, respectively. The shaded band around each 

curve shows the 95% confidence interval for 1,000 bootstrapped 

samples. 
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The matched forecasts and observations are pooled into  17-

21, 41-46 and 65- 70 h lead-times, Figure 7. As recommended by 

the (WWRP/WGNE, 2017)  for the weather forecast verification 

community, the binary counts are pooled using the same number of 

original grid cells. Rather than averaging scores for all 

forecasts, the aggregated statistics are ‘more robust’. Note the  

shaded band specifies the 95% confidence interval. Aggregating   

the forecasts lowered the bias such that, 

B f  2

. As discussed in 

Section 3, the forecast indicate skill at the smallest scale 

when FSS = 0.5, if 

B f  2

. That said, the calculated 

FSSuniform  0.53

, 

is consistent with the guidance noted by Skok and Roberts 

(2018). Again, the  pooled forecast  exceed the skill of a random  

forecast at the grid scale 5 km ( ) and  

FSSrandom 0.05

. For the 

41-46 and 65-70 lead-times,  is reached at scales of ~45 

km (  ) and ~75 km ( 

n  21

 ), respectively, with considerable  

overlap as indicated by shaded 95% confidence interval  in Figure 

7(b) and (c). The 17 -21 h lead-time forecast did not perform as 

well with skill ranging from 185 to 205 km. 
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Figure 7. Variation of aggregated FSS with horizontal scale 

for the 17-, 21-, 41-, 65- and 70-h lead times. Dashed and 

dotted lines are uniform and random FSS, respectively. The 

shaded band around each curve shows the 95% confidence 

interval for 1,000 bootstrapped samples. 
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4.0 Discussion and conclusion 

In this paper, we have presented an approach for 

identifying the scale at which the oil spill forecast 

demonstrates useful skill. The experimental dataset used in the 

study included six forecasts and five satellite products 

routinely used for day-to-day operations during an actual spill 

incident. The forecasts, with resolution of ~3 to 14 km, were 

verified against satellite imagery at 18 to 250 m resolution 

using a 5 km common grid. We found that temporally compositing 

the observations centered on 1-h of acquisition times was 

practical as oil transport for the period of the dataset was 

1km

 over a one-hour period.  

As spatial verification methods are new to oil spill 

forecasting, no other studies exist for comparison with these 

results. However, the horizontal spatial scales are consistent 

with FSS greater than  found in numerical weather 

prediction. For precipitation forecasts, Lewis et al. (2015)  

reported horizontal scales of 30 to 70 km using a 1 km 

verification grid. In addition, Kuell & Bott (2019) estimated 

useful scales ranging from 31 to 101 km using a 7 km grid. Here, 

we used a 5 km verification grid and, by aggregating the 

forecasts, showed better results than the individual forecasts 
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with the 41-46 h and 65-70 h lead-times achieving useful skill 

at approximately 45 km and 75 km, respectively. The results in 

this study are also consistent with other precipitation 

assessments. Mittermaier (2006) and later, Mittermair et al 

(2013) noted that precipitation forecast skill is evident at two 

to three times the coarsest grid resolution. As it turns out, 

this general guidance appears to hold true for the 41-46 h and 

65-70 h lead-times. In the example dataset, the coarsest 

resolution used to generate the forecast was ~ 14 km, meaning, 

we would expect apparent forecast skill at a resolution of about 

30 - 75 km. In contrast, the 17-21 lead-time reaches 

between 185 and 205 km. While unexpected and not within the 

scope of this study, a detailed review of the forecasts, 

particularly the 17-h lead-time, may reveal a likely cause for 

this discrepancy. 

An important weakness in this analysis is limiting the 

calculation of the FSS values over the entire verification grid. 

There is a noteworthy feature observed in the satellite imagery 

southeast of the blowout. The oil slicks in this area eventual 

moved into the Loop Current with significant planning 

repercussions for the emergency response (Liu et al., 2014). 

MacFadyen et al. (2011) suggested the hydrodynamic models used 

to develop the forecasts varied in horizontal resolution and 

40 | P a g e 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

  

 

 

  

 

 

 

 

  

 

 

 

 

 

were sensitive to the position of the Loop Current and the 

shedding of eddies. However, we evaluated the FSS for the entire 

domain, rather than a specific event, resulting in an aggregated 

skill score. Mittermair and Roberts (2010) suggest assessing a 

discrete event by examining a smaller domain. Further analysis 

may provide the hydrodynamic resolution of the Loop Current and 

eddy movement that compares best with oil observations by 

reducing the domain to a sub-region containing these features. 

However, this is not within the scope of this study but should 

be a consideration in further skill assessments. 

Several other factors may have contributed to the poor 

performance of the 17-21 h results. First, not considered was 

observational uncertainty. The satellite observations in the 

study identified the existence of oil film but not thickness, 

which can vary by three or more orders of magnitude. Spill 

models, on the other hand, track oil volume. The model was 

possibly tracking the main oil content properly but not the 

light sheen recorded along with the thick oil. The image 

analysis is also susceptible to its own false positives. Waves 

rupturing the oil film are often mistaken as non-oiled areas and 

the non-petroleum films interpreted as oiled areas. Therefore, 

the oil spill remote sensing community is encouraged to report 
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errors and uncertainty in remote sensing products disseminated 

to both oil spill responders and forecasters. 

Operational oil spill modeling should consistently provide 

helpful forecasts to emergency responders. However, spatially 

distributed oil spill forecasts present huge challenges 

regarding verification. A significant finding of this research 

is that the FSS provides a useful insight into the appropriate 

scale for presenting the oil spill forecasts. We assume that the 

primary purpose of the skill scores, which can provide results 

in real-time, is to allow modelers to adjust the parameters in 

their models to improve operational forecast accuracy for the 

next time-period of forecast. An additional benefit accrues to 

the response team for help in assessing the degree of confidence 

that placed in any specific forecast or model choice. 
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Table(s) Click here to 
access/download;Table(s);DSBandLehrTableSourceFile.docx 

Table 1. Contingency table to evaluate oil spill forecasts, modified from Jolliffe & 

Stephenson (2012). 

Oil Model-forecast 

Oil observation____ _________________ 

Yes No 

Yes 

No 

a (Hit) b (False alarm) 

c (Miss) d (Correct rejection) 

Table 2. Description of the six forecasts. Date and time are Central Daylight Time (CDT). 

Lead-time is the hours between Forecast Prepared and Forecast Estimate. 

Forecast Prepared Forecast Estimate Lead Time (h) 

1 5 May 2010 at 1300 8 May 2010 at 0600 65 

2 5 May 2010 at 2000 8 May 2010 at 1800 70 

3 6 May 2010 at 1300 8 May 2010 at 0600 41 

4 6 May 2010 at 2000 8 May 2010 at 1800 46 

5 7 May 2010 at 1300 8 May 2010 at 0600 17 

6 7 May 2010 at 2100  8 May 2010 at 1800 21 

https://www.editorialmanager.com/mpb/download.aspx?id=566625&guid=351d92f5-a605-464e-b6fc-c7e98c8c7a59&scheme=1
https://www.editorialmanager.com/mpb/download.aspx?id=566625&guid=351d92f5-a605-464e-b6fc-c7e98c8c7a59&scheme=1


 

 

  

 

  

 

  

 

  

 

  

 

Table 3. Experimental Marine Pollution 

Surveillance Reports (EMPSR) used as ‘oil 

observation’ for forecast evaluation. Date and 

time are Central Daylight Time (CDT). 

EMPSR Source Image 

Acquisition 

1 

2 

3 

4 

5 

COSMO-Skymed2 

RADARSAT-2 

TerraSAR-X 

COSMO-Skymed 2 

RADARSAT -1 

8 May 2010 at 

0657 

8 May 2010 at 

0659 

8 May 2010 at 

1823 

8 May 2010 at 

1851 

8 May 2010 at 

1858 



 

  

  

 

 

  

Figure(s) Click here to 
access/download;Figure(s);DSBandLehrFigureSourceFile.docx 

Figure 1. Model-forecast, ‘M’ is shaded gray and the observed 
oil, ‘O’, shaded black with (a) 5 km grid resolution and (b) 10 
km grid resolution. 

https://www.editorialmanager.com/mpb/download.aspx?id=566626&guid=0ff2274e-48c4-4c33-96c9-6b7cbf58b5de&scheme=1
https://www.editorialmanager.com/mpb/download.aspx?id=566626&guid=0ff2274e-48c4-4c33-96c9-6b7cbf58b5de&scheme=1


 

 

 

  

 

  

Figure 2. Map showing the Deepwater Horizon well site, ‘o’, the 

National Data Buoy Center (NDBC) Buoy 42040,’ ’ and boundary 

of the verification domain,’- ‘. 



 

 

 

 

  

Figure 3. Wind observations for Buoy 42040 (NDBC, 1971). 



 

  

  

  
 

 

 

Figure 4. Forecast are shaded blue, the observed oil, black 

and the overlap of the observed oil and forecast, dark blue. 

For clarity, the coastlines are not plotted but for 

reference, the well blowout is marked ‘+’. 



 

 

 

 

 

 

  

Figure 5. Aggregated forecast are shaded blue, the observed 

oil, black and the overlap of the observed oil and forecast, 

dark blue. The coastlines are not plotted but for reference, 

the well blowout is marked ‘+’. 



 

  

  

  

 

 

 

 

  

Figure 6. Variation of FSS with horizontal scale for the 17-, 

21-, 41-, 65- and 70-h lead times. Dashed and dotted lines are 

uniform and random FSS, respectively. The shaded band around each 

curve shows the 95% confidence interval for 1,000 bootstrapped 

samples. 



 

 

 

 

 

 

 

Figure 7. Variation of aggregated FSS with horizontal scale 

for the 17-, 21-, 41-, 65- and 70-h lead times. Dashed and 

dotted lines are uniform and random FSS, respectively. The 

shaded band around each curve shows the 95% confidence 

interval for 1,000 bootstrapped samples. 
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